Sorting Algorithms |

Bubble Sort, Selection Sort, and Insertion Sort

Sorting Algorithms |

Laboratory Session 12

Bubble Sort Selection Sort Insertion Sort
Compare adjacent elements and swap Find the minimum element and place it in Insert elements into the correct position
them position

Objective: Understand the principles of the simplest sorting algorithms, their efficiency, and their application areas in C++ programming.

s) |
o g = Ll

Why is sorting needed?

Sorting is one of the most fundamental operations in computer science and programming. It forms the basis for many algorithms and data structures.

% - 5

Student Lists Library Catalogs File Systems
Ordering students by last name for easy Sorting books by alphabet, genre, or author for Organizing files by creation date, size, or type
searching and organization of the educational quick retrieval of necessary literature for efficient work

process

Fundamentals of Sorting

Input Data

An array of n elements of arbitrary type that needs to be ordered

Output Data

The same array, but with elements arranged in a specific order
(ascending or descending)

Execution Time Memory Stability
How many operations are required for How much additional memory the algorithm Whether the relative order of equal
uses elements is preserved

sorting

@ Bubble Sort

Bubble Sort gets its name from the way elements "bubble up" to their correct
positions, similar to air bubbles rising in water.

O1 (02

Array Traversal Comparison and Swap

Compare each pair of adjacent elements If elements are in the wrong order, swap
from beginning to end their positions

03

Repetition

Repeat the process until the array is fully sorted

Example of Bubble Sort
Operation

Let's consider the step-by-step execution of the algorithm on the array [5, 3, 4, 1]:

1 Initial Array: [5, 3, 4, 1]

Starting with an unsorted array

2 First Pass: [3,4,1, 5]

5 "bubbles up" to the last position, comparing with each neighbor

3 Second Pass: [3, 1, 4, 5]

4 finds its place, 5 is already in position

4 Third Pass: [1, 3, 4, 5]

The array is completely sorted

SORTED ARRAY

L

Bubble Sort Implementation in C++

void bubbleSort(int arr[], int n) {
for(inti=0;i<n-1;i++){
for(intj=0;j<n-i-1;j++){
if (arr[j]1>arr[j+ 1] {

. . aEE
swap(arrfjl, arr[j + 1]1); G D GEEn
} b G D
} G G D NS
-l &
} - o
} n \
- an
]
-l
The outer loop determines the number of passes, and the inner loop determines the -
comparisons in each pass. The swap() function exchanges two array elements. =
-l -
N N

[JJ Optimization: A flag can be added for an early
exit if no swaps occurred during a pass - the
array is already sorted.

Analysis of Bubble Sort
Complexity

O(n?) O(n3) O(n)

Worst Case Average Case Best Case
Array sorted in reverse Elements are in random Array is already sorted
order order (with optimization)
Memory
Algorithm sorts "in place"
Bubble sort performs up to n(n-1)/2 comparisons and swaps in the worst case,
resulting in quadratic time complexity.

@ Selection Sort

Selection sort works by finding the minimum (or maximum) element and placing it in the correct position.

1 2 3
Find Minimum Swap Shift Boundary
Find the smallest element in the unsorted Swap it with the first element of the Increase the sorted portion by one element
portion unsorted portion

Real-life analogy: Imagine you select the shortest person from a group and place them first in a row, then from the remaining, you again select
the shortest and place them second, and so on.

Example of Selection Sort in Action

Let's trace the algorithm's execution on the same array [5, 3, 4, 1]:

Step 1:[5, 3,4,1]

Minimum =1, swap with the first element

Step 2:[1, 3,4, 5]

Minimum among [3, 4, 5] = 3, already in place

Step 3:[1, 3,4, 5]

Minimum among [4, 5] = 4, already in place

Result: [1, 3, 4, 5]

Array is fully sorted

Selection Sort Implementation in
C++

S=—=T void selectionSort(int arr[], int n) {
i for(inti=0;i<n-1;i++){
int minindex = i;
= for (intj=i+1;j<n;j++){
if (arr[j] < arr[minindex])
minindex = j;

et —

———— swap(arr[i], arrfminindex]);
}
}

I
Il

Outer Loop Inner Loop

Finds the minimum element in the
unsorted part

N)|
| mnu
ﬂ

\
[

Iterates through positions to place
minimum elements

Swap

Places the found minimum in its correct position

Analysis of Selection Sort Complexity

Selection sort has stable time complexity in all cases:

O(n2) O(n2) O(n?)

Worst Case Average Case Best Case
Always requires finding the minimum Number of comparisons does not depend on Even in a sorted array, comparisons are needed
data

[J Feature: Selection sort performs exactly n-1 swaps regardless of input data, which can be useful for expensive permutation operations.

€ Insertion Sort

Insertion sort works similarly to how we sort playing cards in our hands — we pick up a
card and insert it into the correct position among the already sorted ones.

Partitioning

The array is logically divided into sorted and unsorted parts

Extraction

Take the first element from the unsorted part

Insertion

Find the correct place in the sorted part and insert the element

nsertion Sort Z

Example of Insertion Sort in
Action

- - Let's consider the algorithm's execution on the array [5, 3, 4, 1]:

1sertion Sort

) Start:[5] 3,4, 1]

The first element is considered sorted

) Insert 3:[3,514,1]

3 is inserted before 5

W
NN

- Insert4:[3,4,5]|1]

4 is inserted between 3 and 5

) Insert1:[1,3,4,511]

1is inserted at the beginning, the array is sorted

J

@

Insertion Sort Implementation in C++

void insertionSort(int arr[], int n) {
for(inti=1;i<n;i++){ e
int key = arr[il; : .

intj=i-1,
‘ . ' = lnseer _thi i:;,'._-;-.'-]\-) "
while (j >= 0 && arr[j] > key) { m=insertiont *{s(cont].)
. _ Tl L inserttoos() ’
arr[j + 1] = arr[jl; = insrtion sont()
j--' = - e -ingeron-sorts i {#sort(],
} — _T{)ut)um
e &l PRSP B
. . = i tion*=tigen
arrfj + 1] = key; B i
- oer‘cl‘laf‘tiol'l] .
} —cort),)

_—

}

The key variable stores the current element to be inserted, and the while loop shifts larger '
elements to the right until the correct position is found. .

Key Idea: Shift elements larger than the current
one to the right, creating space for insertion.

Analysis of Insertion Sort Complexity

0O(n?) O(n?) O(n)

Worst Case Average Case Best Case

Array sorted in reverse order Randomly ordered data Array already sorted or nearly sorted

Advantage: Insertion sort is very efficient for nearly sorted arrays, as it requires a minimal number of comparisons and swaps.

Comparison of Three Algorithms

Algorithm Worst Case
Bubble Sort O(n?)
Selection Sort O(n?)
Insertion Sort O(n?)

Best Case

Stability

Yes

No

Yes

Applicability
Educational Examples
Small Data Sets

Nearly Sorted Data

Each algorithm has its own characteristics and application areas. The choice depends on data characteristics and performance requirements.

Practical Conclusions

Quadratic Complexity Educational Value

All three algorithms have a time These algorithms are ideal for
complexity of O(n?), making them understanding the basic principles
inefficient for large arrays (more of sorting, comparisons, and

than 10,000 elements) element swaps

Practical Application

Used for small arrays (up to 50
elements) or as components of
more complex hybrid sorting
algorithms

Modern C++ libraries (e.g., std::sort) employ more efficient algorithms, but
understanding simple sorting methods remains fundamental for any programmetr.

Reinforcement Questions

Question 1 Question 2 Question 3

Why does insertion sort perform faster than What is the fundamental difference Which of the algorithms discussed are

bubble sort on nearly sorted data? between finding the minimum in selection stable, and what does this mean in
sort and swapping adjacent elements in practice?

bubble sort?

[JJ Hint: Consider the number of comparisons and swaps in each algorithm, as well as how they handle already ordered data segments.

Pricing Community

Additional Tasks

U n I OCk you r Basic Implementation
COd I ng pOtentIaI 1 Implement all three sorting algorithms in C++ and test them on arrays of

different sizes and content.

Performance Measurement

2 Compare the execution time of the algorithms on arrays of 1000 and 10000
elements, and plot time vs. size graphs.

il

MTnnin

Optimization

3 Add an early exit flag optimization to bubble sort and measure the
performance improvement.

E[lliﬂﬂ1|1|

Stability Analysis

4 Create an array with duplicate elements and check which algorithms
preserve the original order of equal elements.

These tasks will help you better understand the features of each algorithm and gain
practical experience in their application.

o
@,

P

[|
(Graduation
92024

Thank you for
vour attention!

Learned the Basics Understood Complexity
Three classic sorting algorithms and Time and space characteristics of
their characteristics algorithms

Ready for Practice

Implementation and testing of algorithms in C++

"Simplicity is the ultimate sophistication."
Studying simple sorting algorithms lays a strong foundation for understanding
more complex data processing methods.

Next Topic: Fast Sorting Algorithms (Quick Sort, Merge Sort, Heap Sort)

