
Sorting Algorithms I
Bubble Sort, Selection Sort, and Insertion Sort

Sorting Algorithms I
Laboratory Session 12

Bubble Sort

Compare adjacent elements and swap
them

Selection Sort

Find the minimum element and place it in
position

Insertion Sort

Insert elements into the correct position

Objective: Understand the principles of the simplest sorting algorithms, their efficiency, and their application areas in C++ programming.

Why is sorting needed?
Sorting is one of the most fundamental operations in computer science and programming. It forms the basis for many algorithms and data structures.

Student Lists

Ordering students by last name for easy
searching and organization of the educational
process

Library Catalogs

Sorting books by alphabet, genre, or author for
quick retrieval of necessary literature

File Systems

Organizing files by creation date, size, or type
for efficient work

Fundamentals of Sorting

Input Data

An array of n elements of arbitrary type that needs to be ordered

Output Data

The same array, but with elements arranged in a specific order
(ascending or descending)

Execution Time

How many operations are required for
sorting

Memory

How much additional memory the algorithm
uses

Stability

Whether the relative order of equal
elements is preserved

ì Bubble Sort
Bubble Sort gets its name from the way elements "bubble up" to their correct
positions, similar to air bubbles rising in water.

01

Array Traversal

Compare each pair of adjacent elements
from beginning to end

02

Comparison and Swap

If elements are in the wrong order, swap
their positions

03

Repetition

Repeat the process until the array is fully sorted

Example of Bubble Sort
Operation
Let's consider the step-by-step execution of the algorithm on the array [5, 3, 4, 1]:

1 Initial Array: [5, 3, 4, 1]

Starting with an unsorted array

2 First Pass: [3, 4, 1, 5]

5 "bubbles up" to the last position, comparing with each neighbor

3 Second Pass: [3, 1, 4, 5]

4 finds its place, 5 is already in position

4 Third Pass: [1, 3, 4, 5]

The array is completely sorted

Bubble Sort Implementation in C++

void bubbleSort(int arr[], int n) {
 for (int i = 0; i < n - 1; i++) {
 for (int j = 0; j < n - i - 1; j++) {
 if (arr[j] > arr[j + 1]) {
 swap(arr[j], arr[j + 1]);
 }
 }
 }
}

The outer loop determines the number of passes, and the inner loop determines the
comparisons in each pass. The swap() function exchanges two array elements.

Optimization: A flag can be added for an early
exit if no swaps occurred during a pass - the
array is already sorted.

Analysis of Bubble Sort
Complexity

O(n²)
Worst Case

Array sorted in reverse
order

O(n²)
Average Case

Elements are in random
order

O(n)
Best Case

Array is already sorted
(with optimization)

O(1)
Memory

Algorithm sorts "in place"

Bubble sort performs up to n(n-1)/2 comparisons and swaps in the worst case,
resulting in quadratic time complexity.

ë Selection Sort
Selection sort works by finding the minimum (or maximum) element and placing it in the correct position.

1

Find Minimum

Find the smallest element in the unsorted
portion

2

Swap

Swap it with the first element of the
unsorted portion

3

Shift Boundary

Increase the sorted portion by one element

Real-life analogy: Imagine you select the shortest person from a group and place them first in a row, then from the remaining, you again select
the shortest and place them second, and so on.

Example of Selection Sort in Action
Let's trace the algorithm's execution on the same array [5, 3, 4, 1]:

Step 1: [5, 3, 4, 1]

Minimum = 1, swap with the first element

Step 2: [1, 3, 4, 5]

Minimum among [3, 4, 5] = 3, already in place

Step 3: [1, 3, 4, 5]

Minimum among [4, 5] = 4, already in place

Result: [1, 3, 4, 5]

Array is fully sorted

Selection Sort Implementation in
C++

void selectionSort(int arr[], int n) {
 for (int i = 0; i < n - 1; i++) {
 int minIndex = i;
 for (int j = i + 1; j < n; j++) {
 if (arr[j] < arr[minIndex])
 minIndex = j;
 }
 swap(arr[i], arr[minIndex]);
 }
}

Outer Loop

Iterates through positions to place
minimum elements

Inner Loop

Finds the minimum element in the
unsorted part

Swap

Places the found minimum in its correct position

Analysis of Selection Sort Complexity
Selection sort has stable time complexity in all cases:

O(n²)

Worst Case

Always requires finding the minimum

O(n²)

Average Case

Number of comparisons does not depend on
data

O(n²)

Best Case

Even in a sorted array, comparisons are needed

Feature: Selection sort performs exactly n-1 swaps regardless of input data, which can be useful for expensive permutation operations.

Ü Insertion Sort
Insertion sort works similarly to how we sort playing cards in our hands 3 we pick up a
card and insert it into the correct position among the already sorted ones.

Partitioning

The array is logically divided into sorted and unsorted parts

Extraction

Take the first element from the unsorted part

Insertion

Find the correct place in the sorted part and insert the element

Example of Insertion Sort in
Action
Let's consider the algorithm's execution on the array [5, 3, 4, 1]:

Start: [5 | 3, 4, 1]

The first element is considered sorted

Insert 3: [3, 5 | 4, 1]

3 is inserted before 5

Insert 4: [3, 4, 5 | 1]

4 is inserted between 3 and 5

Insert 1: [1, 3, 4, 5 |]

1 is inserted at the beginning, the array is sorted

Insertion Sort Implementation in C++

void insertionSort(int arr[], int n) {
 for (int i = 1; i < n; i++) {
 int key = arr[i];
 int j = i - 1;

 while (j >= 0 && arr[j] > key) {
 arr[j + 1] = arr[j];
 j--;
 }
 arr[j + 1] = key;
 }
}

The key variable stores the current element to be inserted, and the while loop shifts larger
elements to the right until the correct position is found.

Key Idea: Shift elements larger than the current
one to the right, creating space for insertion.

Analysis of Insertion Sort Complexity

O(n²)

Worst Case

Array sorted in reverse order

O(n²)

Average Case

Randomly ordered data

O(n)

Best Case

Array already sorted or nearly sorted

Advantage: Insertion sort is very efficient for nearly sorted arrays, as it requires a minimal number of comparisons and swaps.

Comparison of Three Algorithms

Algorithm Worst Case Best Case Stability Applicability

Bubble Sort O(n²) O(n) Yes Educational Examples

Selection Sort O(n²) O(n²) No Small Data Sets

Insertion Sort O(n²) O(n) Yes Nearly Sorted Data

Each algorithm has its own characteristics and application areas. The choice depends on data characteristics and performance requirements.

Practical Conclusions

Quadratic Complexity

All three algorithms have a time
complexity of O(n²), making them
inefficient for large arrays (more
than 10,000 elements)

Educational Value

These algorithms are ideal for
understanding the basic principles
of sorting, comparisons, and
element swaps

Practical Application

Used for small arrays (up to 50
elements) or as components of
more complex hybrid sorting
algorithms

Modern C++ libraries (e.g., std::sort) employ more efficient algorithms, but
understanding simple sorting methods remains fundamental for any programmer.

Reinforcement Questions

Hint: Consider the number of comparisons and swaps in each algorithm, as well as how they handle already ordered data segments.

Question 1

Why does insertion sort perform faster than
bubble sort on nearly sorted data?

Question 2

What is the fundamental difference
between finding the minimum in selection
sort and swapping adjacent elements in
bubble sort?

Question 3

Which of the algorithms discussed are
stable, and what does this mean in
practice?

Additional Tasks

1
Basic Implementation

Implement all three sorting algorithms in C++ and test them on arrays of
different sizes and content.

2
Performance Measurement

Compare the execution time of the algorithms on arrays of 1000 and 10000
elements, and plot time vs. size graphs.

3
Optimization

Add an early exit flag optimization to bubble sort and measure the
performance improvement.

4
Stability Analysis

Create an array with duplicate elements and check which algorithms
preserve the original order of equal elements.

These tasks will help you better understand the features of each algorithm and gain
practical experience in their application.

Thank you for
your attention!

Learned the Basics

Three classic sorting algorithms and
their characteristics

Understood Complexity

Time and space characteristics of
algorithms

Ready for Practice

Implementation and testing of algorithms in C++

"Simplicity is the ultimate sophistication."
Studying simple sorting algorithms lays a strong foundation for understanding
more complex data processing methods.

Next Topic: Fast Sorting Algorithms (Quick Sort, Merge Sort, Heap Sort)

